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The parameter K in the quasi-relativistic INDO (QR-INDO) relation hiAjB
core  = 1⁄2 K Si,j (βi

A + βj
B) was

optimized by applying the QR-INDO method to the optimization of the geometries and calculation of
vibrational wavenumbers of 36 molecules of the XY4 type with X = C, Si, Ti, Ge, Zr, Sn, Hf and Pb,
and Y = H, F, Cl, Br and I. The calculations were performed for 10 values of K uniformly spaced
across the region of 1.1 to 2.0. The optimum value with which the best fit of the bond lengths and
vibrational frequencies was achieved was K = 1.5. This is very close to the value of 1.4 recom-
mended in the literature. The study was performed using recent tabulated gas-phase data. The appli-
cation of the variable scaling approximation approach was found generally unsuitable.

It is well known that non-relativistic methods, both ab initio and semiempirical, fail to
successfully describe systems containing heavy atoms. The routine use of relativistic ab
initio methods, on the other hand, meets with severe problems of technical (and also
economic) nature. Despite the enormous success of ab initio methods, semiempirical
methods still remain a competitive alternative for treating molecules which contain
heavy atoms. A quasi-relativistic version of the INDO method (QR-INDO) has been
developed by Boca recently1.

A typical semiempirical method, QR-INDO suffers from all the shortcomings follow-
ing from the generation of a universal and internally consistent parametrization. One
serious problem consists in a proper choice of the target properties whose good fit is the
criterion of optimum parameters. There is a certain analogy in ab initio calculations
where vibrational frequencies serve as the target properties. In this case, the calculated
force constants are scaled by empirical factors to achieve a good fit to the observed
frequencies. The scaling factor can be the same for all force constants, or different
scaling factors are applied to different types of vibration (stretching, bending, etc.), or
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each different force constant is assigned an individual scaling factor (refs2–5 and refer-
ences therein).

The choice of experimental data for calibration is a next serious problem, particularly
with respect to their origin and reliability. Moreover, in the case of systems containing
heavy atoms (metals in particular), gas-phase data are frequently unavailable. A suc-
cessful parametrization requires the use of a large set of data. Often such a large set
exists but not all of the data pertain to the gaseous phase. In some cases it is actually
more appropriate to use smaller sets of homogeneous data than larger sets of inhomo-
geneous data. The application of inhomogeneous sets results in statistical noise and bias
in the parameters determined; this price for the maximum possible universality is too
high.

In the QR-INDO method, the two-center off-diagonal matrix elements of the oper-
ator hcore are calculated by the relation

hiAjB
core  = 

1
2

 K Si,j (βi
A + βj

B)  , (1)

where Si,j is the overlap integral, βi
A and βj

B characterize the quality of the i-th and j-th
atomic orbitals of atoms A and B, respectively, and K is the scaling factor. This scaling
factor is the only adjustable parameter (the β values are not1). The problems mentioned
above give rise to a certain ambiguity in a suitable choice from among the K values
recommended in ref.1. Among them is K = 1.4, which was obtained by fitting the
equilibrium bond lengths for a wide variety of compounds. Experimental data were
taken from refs6,7. The application of the variable scaling factor approach has also been
suggested in ref.1; here the scaling factor is modified according to the atomic electrone-
gativities χA, χB:

KA,B = χA/χB  ,     χA > χB  . (2)

This approach is recommended for extremely polar, almost ionic bonds. The treatment
in ref.1 was based on a database of experimental structures, many of which pertained to
the condensed phase.

The aim of the present paper was to find a K value which provides the best fit to both
the observed equilibrium geometries and vibrational frequencies, which reflect the cur-
vature of the energy surface in the near environment of the local minima. Gas-phase
data are employed for this; the effect of the condensed phase is better included in some
other way.
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THEORETICAL

The optimization of the scaling factor K should lead to correct positions of the local
extrema on the energy surface. The result of optimization is unaffected by linear trans-
formation of the energy surface, i.e. by a constant shift and/or alternative choice of the
energy scale. The optimum K value corresponds to the minimum of the target function

Ug(K) = ∑ 
i,j

[Pi,j
exp − Pi,j

calc (K)]2  , (3)

where the summation runs over all internal coordinates j of molecules i, and Pi,j
exp is a

target geometrical parameter. Such an approach is consistent with the character of
semiempirical methods, which should provide a good forecast of trends of various
properties while the absolute accuracy of the values is less strictly required.

Vibrational wavenumbers are proportional to the square roots of the force constants.
Force constants include the second derivatives of the energy surface with respect to the
internal coordinates. A straightforward inclusion of vibrational wavenumbers in the
optimization procedure preserves the invariancy with respect to a constant shift of the
energy surface but the invariancy with respect to the energy scaling is lost. Since the
“semiempirical attributes” of the parametrization should not change, it is necessary to
preserve the invariancy with respect to the energy scale as well, also if the vibrational
wavenumbers are to be fitted. This requirement is met by the following target function,

Uf(K) = minη



∑ 
i,j

[ωi,j
exp − η ωi,j

calc(K)]2



 = ∑ 
i,j

[ωi,j
exp − η∗ (K) ωi,j

calc(K)]2  , (4)

where the subscripts i and j refer to the molecules and their vibrational modes, respec-
tively. The η*(K) value, for a given K, is calculated as

η∗ (K) = ∑ 
i,j

ωi,j
exp ωi,j

calc(K) / ∑ 
i,j

[ωi,j
calc(K)]2  . (5)

A K value which is optimum with respect to both target functions Ug(K) and Uf(K) can
be obtained by minimization of the combined target function

U(K) = wg Ug(K) + (1 − wg) Uf(K)  , (6)

where wg is a weighting factor for the geometric criteria (0 ≤ wg ≤ 1). By continuously
changing this weighting factor from 0 to 1 we pass smoothly from the wavenumber
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criterion to the geometric criterion. The choice of a proper wg is actually a problem,
which is also subjectively biassed. On the other hand, the freedom in the choice of wg

can be of assistance when the reliability of experimental data is to be taken into ac-
count.

RESULTS

The parametrization was accomplished using a set of 36 electroneutral XY4 closed-shell
molecules possessing the tetrahedral equilibrium geometry: X = C, Si, Ti, Ge, Zr, Sn,
Hf and Pb; Y = H, F, Cl, Br, I. Sufficiently reliable gas-phase geometries and vibra-
tional wavenumbers are available for them8,9. The study was confined to closed-shell
molecules to exclude the possibility of occurrence of degenerate ground states and
lowering of symmetry of the equilibrium geometry. The X−Y bond length is then the
single geometric parameter. Moreover, the vibrational analysis is facilitated by the
preservation of the Td symmetry. In the harmonic approximation, the energy surface is
defined by mere five force constants F, viz.

2 V = F(A1) S2(A1) + F(E) (Sa
2(E) + Sb

2(E)) + F1(T2) (S1a
2 (T2) +       

+ S1b
2 (T2) + S1c

2 (T2)) + F2(T2) (S2a
2 (T2) + S2b

2 (T2) + S2c
2 (T2)) +

+ 2 F12(T2) (S1a(T2) S2a(T2) + S1b(T2) S2b(T2) + S1c(T2) S2c(T2))  , (7)

where the symmetry coordinates are defined following Cyvin10:

S(A1) = 
1
2

 (r1 + r2 + r3 + r4)

Sa(E) = 12−1/2 R (2 α23 − α12 − α13 + 2 α14 − α34 − α24)

Sb(E) = 1/2 R (α13 − α12 + α24 − α34)

S1a(T2) = 1/2 (r1 − r2 + r3 − r4)

S1b(T2) = 1/2 (r1 + r2 − r3 − r4)

S1c(T2) = 1/2 (−r1 + r2 + r3 − r4)

S2a(T2) = 2−1/2 R (α24 − α13)

S2b(T2) = 2−1/2 R (α34 − α12)

S2c(T2) = 2−1/2 R (α14 − α23)  . (8)

1904 Turi Nagy, Liska, Tunega:

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



Here R is the equilibrium bond length and ri and α i,j are the differences of the X−Y
bond lengths and Yi−X−Yj bond angles, respectively, from their equilibrium values.

The equilibrium geometries were obtained by direct minimization of the total SCF
energy in the Td geometry using the program MOSEM7 (ref.11). In the symmetry coor-
dinate basis, the harmonic force constants were obtained by mapping the energy surface
for the equilibrium geometry. Bond length changes ri of ±0.008 and ±0.012 . 10−10 m
and bond angle changes α i,j of ±1° and ±2.5° were used for the mapping. The standard
deviations of the force constant estimates were calculated by ordinary linear regression
analysis. The kinematic Wilson matrix was set up using relativistic atomic masses
corresponding to the natural isotopic composition.

All calculations were performed for 10 values of K within the range of 1.1 to 2.0
with a step of 0.1. The K value calculated by the variable scaling formula (2) was
applied as well. The criteria Ug(K) and Uf(K), calculated for the various K values, were
evaluated separately. Three sets of experimental data were employed: data in ref.7, data
in the JANAF Tables, 2nd edition of 1971 (ref.8) and data in the same tables, 3rd
edition of 1985 (ref.9). The data set from ref.7 includes equilibrium geometries and
vibrational wavenumbers for CH4, CF4, CCl4, CBr4, CI4, GeH4, GeF4, GeCl4, GeBr4,
GeI4, HfF4, HfCl4, HfBr4, HfI4, PbF4, PbCl4, PbBr4, PbI4, SiH4, SiF4, SiCl4, SiBr4, SiI4,
SnH4, SnF4, SnCl4, SnBr4, SnI4, TiF4, TiCl4, TiBr4, TiI4, ZrF4, ZrCl4, ZrBr4 and ZrI4;
some pertain to the gaseous phase, other to the crystal phase. The JANAF data pertain
all to the gaseous phase. Tables from ref.8 provide data for CH4, CF4, CCl4, CBr4, PbF4,
PbCl4, PbBr4, PbI4, SiH4, SiCl4, TiBr4, TiI4, ZrBr4, and ZrI4, and tables from ref.9 pro-
vide data for CH4, CF4, CCl4, CBr4, PbF4, PbCl4, PbBr4, PbI4, SiH4, SiF4, SiCl4, SiBr4,
SiI4, TiF4, TiCl4, TiBr4, TiI4, ZrF4, ZrCl4, ZrBr4, and ZrI4. The latter set also corrects
some values from the former edition. The Ug(K) and Uf(K) values were normalized by
dividing them by the number of experimental data used. For graphical representation,
they were normalized further so that the maximum in each plot have the value of 1.

The dependences of Ug on K for the three sets of experimental data are plotted in Fig. 1.
It is clear that the “variable scaling” parametrization gives unsatisfactory results. The
lowest minimum is obtained for the data set of ref.8; the minimum Ug is attained at K = 1.2.
Somewhat higher is the minimum value of the function for the set from ref.9, which lies
at K = 1.5. The data set from ref.7 provides the highest minimum Ug value, which is
found at K = 1.4. The analogous plots for the Uf criterion are shown in Fig. 2. The
“variable scaling” approach gives the poorest results in all cases. All the three Uf(K)
plots descend monotonously with the growing K. Thus, higher values of K are preferred
for lower Uf(K). Lower Uf values are obtained for the data sets of refs7,9; the two curves
approach each other closely. This fact is of importance in view of the different ex-
perimental data involved.

The Uf(K) plots do not enable an optimum K value to be estimated based on the
position of the local extremum of Uf, but the Uf values can help us to decide which set
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TABLE I
Force constants (in 102 N m−1; upper rows) and their standard deviations (lower rows) for the opti-
mum value of K = 1.5

Molecule F(A1) F(E) F1(T2) F2(T2) F12(T2)

  CBr4 17.7668 0.5530 12.4302 0.7916 −0.9633

 0.5287 0.0018  0.1170 0.0058  0.0192
  CCl4 19.8593 0.6261 14.0218 0.9100 −1.0628

 0.4807 0.0019  0.1073 0.0061  0.0192

  CF4 32.1578 0.8743 24.8598 1.2929 −1.3314

 0.3525 0.0022  0.0801 0.0070  0.0176

  CH4 16.9865 0.8761 15.9860 0.9925 −0.5186

 0.1490 0.0015  0.0336 0.0046  0.0093

  CI4 14.7295 0.4623 10.2054 0.6477 −0.8185

 0.6249 0.0018  0.1378 0.0056  0.0208
  GeBr4  9.1726 0.2116  7.1915 0.2989 −0.3710

 0.2564 0.0006  0.0561 0.0019  0.0075

  GeCl4 10.1576 0.2278  8.1031 0.3276 −0.3852

 0.2564 0.0007  0.0577 0.0021  0.0082

  GeF4 12.4164 0.1683 11.2547 0.2485 −0.2080

 0.1762 0.0006  0.0385 0.0018  0.0062

  GeH4 7.5364 0.3557  7.1578 0.3708 −0.2480

 0.1057 0.0006  0.0240 0.0018  0.0048
  GeI4  8.1358 0.2009  6.1686 0.2792 −0.3605

 0.2724 0.0006  0.0609 0.0018  0.0079

  HfBr4  9.0334 0.2842  7.2283 0.2953 −0.0405

 0.2564 0.0006  0.0561 0.0018  0.0075

  HfCl4  9.9466 0.3216  8.0301 0.3269 −0.0079

 0.2243 0.0006  0.0497 0.0018  0.0070

  HfF4 12.2294 0.2570  9.9470 0.2323  0.1729

 0.0208 0.0001  0.0045 0.0002  0.0007
  HfI4  7.9347 0.2531  6.3200 0.2800 −0.1054

 0.3204 0.0006  0.0705 0.0021  0.0088

  PbBr4  7.4693 0.1439  6.1837 0.1984 −0.2525

 0.2083 0.0004  0.0449 0.0013  0.0058

  PbCl4  8.1522 0.1521  6.8529 0.2129 −0.2567

 0.1923 0.0004  0.0433 0.0014  0.0058

  PbF4  9.4889 0.0994  8.9473 0.1451 −0.1080

 0.0929 0.0003  0.0208 0.0008  0.0030
  PbI4  6.6712 0.1442  5.3225 0.1946 −0.2594

 0.2083 0.0004  0.0465 0.0012  0.0056

1906 Turi Nagy, Liska, Tunega:

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



TABLE I
(Continued)

Molecule F(A1) F(E) F1(T2) F2(T2) F12(T2)

  SiBr4 9.0106 0.2190 6.9427 0.3139 −0.3784
0.2564 0.0006 0.0593 0.0021  0.0082

  SiCl4 9.8510 0.2350 7.7249 0.3420 −0.3911

0.2564 0.0007 0.0577 0.0022  0.0083

  SiF4 11.6305 0.1730 10.3781 0.2582 −0.2112

0.1602 0.0005 0.0369 0.0018  0.0059

  SiH4 7.5938 0.3791 7.2477 0.4022 −0.2361

0.1122 0.0006 0.0256 0.0019  0.0053

  SiI4 7.9911 0.2089 5.9583 0.2940 −0.3710
0.2724 0.0006 0.0625 0.0019  0.0080

  SnBr4 7.5856 0.1463 6.2874 0.2048 −0.2495

0.2243 0.0005 0.0497 0.0015  0.0064

  SnCl4 8.3212 0.1547 7.0035 0.2205 −0.2533

0.2083 0.0004 0.0449 0.0014  0.0059

  SnF4 9.5180 0.1020 8.9558 0.1519 −0.1093

0.0721 0.0002 0.0160 0.0006  0.0024

  SnH4 6.0560 0.2659 5.7811 0.2759 −0.1885
0.0929 0.0004 0.0208 0.0013  0.0038

  SnI4 6.7643 0.1469 5.4034 0.2012 −0.2587

0.2243 0.0004 0.0497 0.0013  0.0059

  TiBr4 5.9932 0.2083 4.3487 0.2275 −0.0226

0.1586 0.0004 0.0352 0.0012  0.0048

  TiCl4 6.1525 0.2330 4.3836 0.2539 −0.0009

0.1490 0.0004 0.0336 0.0012  0.0046

  TiF4 4.9481 0.1574 2.6366 0.1801  0.0706
0.0817 0.0003 0.0176 0.0008  0.0029

  TiI4 5.7131 0.1853 4.2516 0.2127 −0.0709

0.2083 0.0004 0.0465 0.0013  0.0058

  ZrBr4 7.2312 0.2341 5.5696 0.2404 −0.0064

0.1923 0.0004 0.0449 0.0014  0.0059

  ZrCl4 7.7619 0.2612 5.9942 0.2648  0.0217

0.1923 0.0004 0.0433 0.0015  0.0058

  ZrF4 8.1667 0.1797 5.9858 0.1833  0.1366
0.0881 0.0003 0.0192 0.0008  0.0030

  ZrI4 6.5692 0.2145 5.1061 0.2328 −0.0635

0.2724 0.0005 0.0593 0.0016  0.0074
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of data to employ. The data from ref.8 do not seem suitable for the parametrization. As
the Ug function was calculated only for a discrete set of K values, the Ug minimum at
K = 1.5 formed within this set evidently may not be the true one. The closer inspection
of the shape of the Ug-curve (Fig. 1) shows that the true minimum of Ug for data from
ref.9 is somewhere between K = 1.4 and 1.5. However, adding now the monotonously
descending function Uf (according to relation (6)) will slightly shift the minimum of the
resulting function U back towards higher K values whatever is the weighting factor wg.
Thus, taking the value of K = 1.5 as a minimum of U seems to be acceptable for any
wg. The equilibrium bond lengths obtained with this K value for the 3 sets of data are
shown in Figs 3 – 5, respectively, as plots of calculated versus observed values. The

rcalc

10−10m

rexp, 10−10 m rexp, 10−10 m

rcalc

10−10m

FIG. 3
Calculated bond lengths plotted against ob-
served data (ref.9) 

FIG. 4
Calculated bond lengths plotted against ob-
served data (ref.8) 

Ug Uf

K K

FIG. 1
Dependence of the criterion Ug on the K value.
Data set: ■  ref.7, ● ref.8, ❍  ref.9. VS denotes
the variable scaling approximation of K

FIG. 2
Dependence of the criterion Uf on the K value.
Data set: ■  ref.7, ●  ref.8, ❍  ref.9. VS denotes
the variable scaling approximation of K
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linear best fit lines are also shown for illustration. The calculated vibrational wavenum-
bers (scaled by a factor of η*(1.5) = 0.512 obtained for K = 1.5 using the data from
ref.9) are compared with the observed values in Fig. 6. All the results demonstrate that
the requirement placed on semiempirical methods, viz. that they should provide correct
trends, is sufficiently well satisfied by the QR-INDO method. The force constants, along
with their standard deviations, calculated for K = 1.5 are given in Table I. The magnitude
of the standard deviations demonstrates that the harmonic approximation is fully ac-
ceptable to the systems studied.

CONCLUSIONS

1) The approach of variable scaling approximation of K is generally unacceptable,
although it may give satisfactory results in some particular cases.

2) The optimum value of K = 1.5 obtained by the treatment is very close to the value
of 1.4 proposed in ref.1.

3) The effect of condensed phase should be accounted for by some method different
from the parametrization of the dominant contribution to the total SCF electron energy.
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